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1. Introduction
Power converters are highly non-linear systems and have variable structures per switching period. These features 
sometimes make it difficult to design the controller. At the same time, control techniques play important roles in 
enabling power converters to achieve their maximum efficiency. The main purpose of the control action is to provide 
a good steady-state and dynamic behaviour, which includes fast response time, efficiency, robustness and invariant 
behaviour. Furthermore, a good dynamic response can minimise the switching losses of the converters, thereby 
increasing efficiency.

Numerous linear and non-linear control techniques are available for controlling DC/DC converters. The linear 
controllers (such as PID controllers) are simple structures and easy to implement but they have problems with 
robustness, external disturbances, settling or response time (Wibawa et al., 2020). To overcome these disadvantages 
properties, numerous non-linear control mechanisms are used, such as direct pole placement, sliding mode, fuzzy 
control, model predictive control, feedback linearisation, etc. (Mumtaz et al,, 2021; Nishtha et al., 2016). The last of 
these is less frequently mentioned in the literature, but this method has many possibilities.

Feedback linearisation is one of the best techniques for the investigation and design of non-linear systems. 
This topic is discussed by Salimi and Siami (2015), Zheng and Shuai (2012) and Bhattacharyya et al. (2018). 
The main idea of this approach is to algebraically transform the non-linear system dynamics into a fully or 
partially linearised system, thus allowing the feedback control techniques to be applied. This method will not 
lose the non-linearity of the system at all. Our previous research has shown that using an error integrator to 
FBCL represents better transient behaviour and can decrease the inrush current at start-up (Csizmadia and 
Kuczmann, 2021).
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Abstract:   This paper presents an extended form of Feedback Linearisation Control (FBLC), which is tested in a non-ideal buck converter 
in Continuous-conduction Mode (CCM). The FBLC is often used in power electronics to control a non-linear system, due to its 
advantageous properties. The application of the error integrator shows better steady-state and transient properties, such as a 
decrease of inrush current. The linearised system has been controlled by the pole placement and the technique is illustrated through 
an example and simulated via Matlab. The results have been compared by using a classical PID controller, allowing the benefits of 
FBLC to be highlighted.
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The purpose of this article is to present the FBCL in detail, highlight the benefits of the extra error integrator 
and investigate the non-ideal system modelling behaviour through a Continuous-conduction Mode (CCM) 
buck converter example. At the end of the article, the results will be compared with a self-designed PID 
controller.

2. State-space Model of Buck Converter with Parasitics
The full, detailed model of a buck converter with parasitics is shown in Figure 1.

The averaged state-space model in CCM mode is given by the following expression (which was discussed in 
Erickson and Maksimovic [2001] and Salimi and Siami [2015]):
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where Cv  and Li  represent the capacitor voltage (output voltage) and inductor current; iv  is the input DC voltage; 
, , R L C  symbolise, respectively, the output load, inductance and capacitance; and d denotes the duty cycle of the 

converter. The parasitic quantities are symbolised by , , ,sw d d eslr r V r  and esrr , which are the DSonR  of the MOSFET 
switching element, the diode on-state resistance, the diode drop voltage and the last two the parasitic resistance of 
reactant elements, respectively.

A SISO non-linear system can be given by:
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Fig. 1. Buck converter including parasitics.
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3. Exact Feedback Linearisation
The feedback linearisation method is discussed in detail by Isidori (1995). The investigated SISO system is given in 
the form corresponding to Eq. (3). Let us differentiate the output functions by time until the input function appears 
in the expressions:
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where fL h and gL h mean the Lie derivative of ( )h x  along ( )f x  and ( )g x , respectively.
Differentiating y continuously until ( ) ( )1, 0r

g f g fL L h x L L h x−≡ ≠ , a relative degree of the system is equal to r. As a 
result of this, we get an integral line, i.e. 1z y= , 2z y=  , 3z y= , etc., whose thr  element is:
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Define v as new input:

 ( ) ( ) ( )1 .rr
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This u  input is the new input of the system. From this, the original input can be obtained:
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The state-space description of the whole system is:
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The linear controller is designed for matrix A and vector B. A and B are always of this shape, and the number of 
rows depends on the number of state variables.

In the case of buck converter, the controlled quantity is the output (capacitor) voltage; so, the non-linear 
coordinate transformation is given by:
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The new control input is given by applying Eq. (8):
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where
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4. Controller Design
The controller was designed by Ackermann’s formula, which is based on the work of Bajoria et al. (2016) and a 
control tutorial for Matlab and Simulink. To determine the poles, we started from a rule of thumb; so, the poles of 
the system (p) were moved to:

 
1 ,
5

p = −
τ

 (13)

where τ is the time constant of the system. In the case of buck converter, the time constant (τ) is equal with that in Eq. (8):

    1 0 10   0.0001 .RC F sτ = = Ω ⋅ µ =  (14)

Based on the simulations, the final values of the poles are obtained:

 [ ]1 / 0.00005; 1 / 0.0005; 1 / 0.00005 .p = − − −  (15)

From this, the feedback gain matrix is obtained:

 
9 4 131.8750 10 ,7.5000 10 ,1.5625 10 .Tk  = ⋅ ⋅ ⋅   (16)

The block scheme of the whole system is shown in Figure 2.

Fig. 2. Matlab Simulink model of the system with error integrator.
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5. Simulation Results
The properties of the presented controller are testified by MATLAB Simulink. Its details are specified in Table 1. For 
better comparability, the parameters have been derived from the work of Salimi and Siami (2015). To demonstrate 
the beneficial properties of feedback linearisation control (FBLC), we also designed a PID controller, which is based 
on the work of Wibawa et al. (2020) and Huifang et al. (2019). The PID controller parameters are listed in Table 2.

To investigate the proposed controller, the following tests have been conducted:
•	 Start-up test;
•	 Dynamic response for step/sudden load resistance change; and
•	 Dynamic response for step/sudden for step/sudden input voltage change.

Fig. 3. Capacitor voltage and inductor current during start-up.

Table 1. Buck converter parameters.

Sign Value

R 10Ω

L 2000 μH

C 10 μF

rsw 0.1Ω

rd 1mΩ

Vd 0.8V

resl 0.2Ω

resr 0.1Ω

Vin 32V

Vo 12V

Io 1.2A

fsw 100 kHz

Table 2.  PID controller coefficient.

Parameter Value

P 0,00155

I 8.3

D 1.473 × 10−7
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5.1. Start-up test
The start-up test was made by nominal parameters. The response of the proposed controller during start-up is 
shown in Figure 3. It is clear from the simulation result that the error integrator eliminates the inrush current, and the 
settling time became extremely short (<5 ms). The nominal inductor current is shown in Figure 4.

5.2. Dynamic tests
To investigate the response of controllers for the load change, the load resistor value is changed between 10 Ω 
and 20 Ω, with a 0.05 s period time. The responses of the output voltage and inductor current to load changes 
are shown in Figure 5. In a similar way, the responses to changes in input voltage were tested: the input voltage 
was changed between 32 V and 45 V, with a 0.05 s period time. The responses are shown in Figure 6. The 
dynamic properties of the proposed controller are equally good in comparison with the results obtained by Salimi 
and Siami (2015).

Fig. 5. Inductor current and capacitor voltage response to load changes.

Fig. 4. Inductor current ripple in nominal condition (FBLC). FBLC, Feedback linearisation control.
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6. Conclusions
This research describes a closed-loop control of buck converter using exact feedback linearisation. Compared 
to previous work (e.g., Csizmadia and Kuczmann, 2021), the non-ideal state-space model does not give many 
different results. The controller retains its positive benefits, such as better transient behaviour and reduced inrush 
current, due to the error integrator.

In further research, this extended FBCL method will be applied to another DCDC converter (boost) and 
experimental tests will be performed. Further, the ideal state-space model is expected to make the controller design 
easier and faster.

Fig. 6. Capacitor voltage and inductor current response to input voltage changes.
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